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As we turn our attention towards Third Generation Sequencing (TGS), it might 
be worthwhile to see what the Second Generation Sequencing (SGS) had to 
offer in terms of bioinformatics pipeline to study certain cells, such as cancerous 
cells in this study this analysis using SGS can act as a template for improved 
research using TGS technology. Results of the Differentially Expressed (DE) 
analysis showed that Dexamethasone (Dex) treatment causes both up and 
downregulation of genes in breast cancer cells. Comparison of the number 
of DE genes showed that longer exposure to Dex induces the transcription of 
greater number of DE genes compared to the normal state, i.e., non-treated 
cells. Treatment of studied breast cancer cells with Dex for 4h almost doubled 
the number of DE genes compared to 2h Dex treatment.  Since Dex is a 
synthetic corticosteroid and binds to the Glucocortisol Receptor in place of 
natural glucocorticoids, it can be expected to induce the activation of GR, and 
thereby, cause changes in the transcriptional state of GR-regulated genes 
leading to the activation of pathways that are regulated by GCs. Few diseases 
are also possibly related to Dex treatment. The examination of enriched 
diseases is particularly important from a clinical perspective, since it can give 
indications of risks that exposure to Dex may bear, before exploring Dex or its 
homologous forms as a treatment option for cancer.
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INTRODUCTION

Activation of glucocorticoid receptor and 
target gene recognition
Glucocorticoid Receptor (GR) is a hormone-activated nuclear 
receptor, which mediates the effects of Glucocorticoids (GCs) 
by transcriptionally activating or repressing the expression 
of glucocorticoid responsive genes [1]. GCs belong to 
corticosteroids, which are a class of steroid hormones and an 
essential part of various physiological processes. GCs can diffuse 
freely through the cell membrane due to their lipophilic nature. 
In humans, GR is encoded by the Nuclear Receptor Subfamily 3 
Group C Member 1 (NR3C1) gene localize on chromosome [2]. 
NR3C1 consists of 9 exons of which exons 2 encode-9 encode the 
97 kDa GR protein, which can function as a transcription factor 
or as a regulator of other transcription factors. GRs regulate the 
expression of approximately 10%-20% of the human genes [3].

GR is a modular protein composed of three major domains: 
N-terminal Transactivation Domain (NTD), DNA-Binding
Domain (DBD), and C-terminal Ligand Binding Domain
(LBD) [4] (Figure 1). The NTD contains a major transactivation 
domain, termed Activation Function (AF)-1, which is central
for the interaction with molecules necessary for the initiation of
transcription. The DBD is the most conserved domain amongst
all the nuclear receptors. It contains two zinc finger motifs that
recognize and bind 15 bp long target sequence motifs called
Glucocorticoid Responsive Elements (GREs). The DBD and
LBD are separated by a flexible hinge region. The LBD, which
consists of 12 α-helices and four β-sheets, forms a hydrophobic
pocket for binding glucocorticoids and contains a second
transactivation domain, termed AF-2, which interacts with co-
regulators in a ligand-dependent manner [5].

The absence of GCs, inactive GR resides primarily in the cytoplasm 
as a monomer bound to a multi-protein complex, which includes 
chaperone heat shock proteins and immunophilins [6]. GR is 
activate by the binding of GC, which induces a conformational 
change in GR exposing its nuclear localization signals [7]. 
Activated GR is imported into the nucleus where it exerts its 
function. GR either trans-activates or trans-represses genes 
by associating with glucocorticoid binding sites in DNA that 
contain GRE-1. Genome-wide analyses have found that the 
majority of GR binding sites are located outside the promoter 
of glucocorticoid responsive genes in intergenic or intragenic 
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Fig. 1. GR domain structure and sites of post-translational modifications. AF-1 is located between amino acids 77 and 262 of the NTD. Sequences that 
are important for receptor dimerization and nuclear translocation are located in the DBD. The amino terminus of the Hinge region (H) is involved in 

the dimerization of DBD. The LBD contains AF-2 and sequences that are important for dimerization, nuclear translocation, and interactions with other 
molecules. Certain amino acid residues located in NTD, H and LBD are also susceptible to acetylation (A), Phosphorylation (P), Ubiquitination (U) or 

Sumoylation (S) [4]

Fig. 2. Schematic map of pathways of GC. GR is predominantly located in the cytosol and gets activated by the binding of GC that leads to a series 
of pathway activation that can then lead to several gene activation and repression by various mechanisms (A, B, C) [4]

regions [8]. GR recognizes its target genes with GREs and binds 
to them as a dimer. After modulating the transcription of its 

responsive genes, GR disassociates from the GC and is export 
back to the cytoplasm.

Glucocorticoid action at pathway level
GCs are fundamentally involved in the regulation of various 
physiological processes, such as cell proliferation, development, 
metabolism, immune response, and inflammatory reactions [1]. 
GREs have been show to mediate the glucocorticoid-dependent 
induction of several genes and, therefore, are often referred to 
as activating or positive GREs. GR occupancy of the canonical 
GREs can also lead to repression of target genes. In fact, nega-
tive GREs have described to mediate glucocorticoid-dependent 
repression of specific genes [9]. The GR, when ligand to GC, ac-
tivates transcription through direct binding to simple (+) GRE 
DNA Binding Sequences (DBS). GC-induced direct repression 
via GR binding to "negative" GREs (nGREs) complex has been re-
ported. However, GR-mediated trans-repression was generally as-

cribed to indirect "tethered" interaction with other DNA-bound 
factors. It has reported that GC-induced direct trans-repression 
via the binding of GR to simple DBS (IR nGREs) is unrelated to 
(+) GRE-9. These DBS act on agonist-ligand GR, leading to the 
assembly of cis-acting GR-SMRT/NCoR repressing complexes. 
IR nGREs are present in over 1000 genes which are mouse/hu-
man ortholog, and are repressed by GC in vivo. Thus, variations in 
the levels of a single ligand such as GC can turn the levels of gene 
expression depending on their response element DBS, contribut-
ing to an additional level of regulation in GR signaling. Given that 
adrenal secretion of GC fluctuates in a circadian and stress-related 
fashion GR signaling is equally impacted by it. The schematic map 
of the biochemical reactions depicted in figure 2.
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Glucocorticoids change the balance of G protein and β-arrestin-
dependent signaling responses for a given G Protein-Coupled 
Receptors (GPCR) by altering the ratio of β-arrestin-1 and 
β-arrestin-2 [10]. This shifting mechanism of the GPCR signal-
ing profile may account for the superior clinical efficacy of gluco-
corticoid/β2 adrenergic receptor agonist combination therapies. 
The interaction of GR with DNA is dynamic between bound 
and unbound states. When in a bound state, additional chroma-
tin remodeling enzymes and co-regulators lead to transcription 
rates to change, as RNA-polymerase II activity is affected. GR also 
regulates the transcription of genes by physically interacting with 
them as shown in at the same time there exists non-classical ways 
by which GR can act on various pathways, multiple mechanisms 
appear to be involved in signaling events that ultimately involve 
kinases, such as PI3K, AKT, and MAPKs.

Ribonucleic Acid (RNA)-sequence
The cell’s RNA content dictates what the cell is capable of doing, 
which makes the level of transcription fundamental in observing 
changes in cells caused by various genetic programs [11]. RNA-
sequencing (RNA-seq) has become an indispensable application 
in transcriptome studies. It enables the determination of genome-
wide gene expression profiles in a biological sample at a given time. 
Expressed genes can be identified and quantified using RNA-seq 
which gives insights into molecular mechanisms that drive dis-
tinct cellular functions. Essentially, RNA-seq determines the nu-
cleotide sequence of extracted and fragmented RNA molecules by 
utilizing next-generation sequencing. These nucleotide sequences 
can then be used to determine what genes are turned on and to 
what extent in a cell. Thereby, RNA-seq is commonly used to com-
pare gene expression between, e.g., different conditions, cell types, 
or tissues to identify genes of which expression differ substantially 
and to understand better the underlying molecular basis of their 
distinct features. Additionally, RNA-seq used in genome annota-
tion to annotate novel transcriptional events.

Data preprocessing in Ribonucleic acid-se-
quence

To obtain applicable gene expression counts from sequencing data 
for downstream analysis, several computational steps need to be 
performed. These steps include quality control of raw sequencing 
reads, trimming of low-quality bases, read alignment to a refer-
ence genome, quantification of transcript abundance, and filter-
ing and normalization of quantified reads [12]. Raw sequencing 
reads are usually in a FASTQ format. The initial quality of raw 
reads is inspected to determine appropriate parameters for trim-
ming. Next, the removal of adapter sequences and bases that are 
likely incorrectly called is conducted with read trimming [13]. 
Although it is not always required, read trimming can greatly in-
crease the Mapp ability of reads. Following adequate quality-based 
trimming, sequence reads are aligned to a reference genome which 
converts them to genomic coordinates. Mapped reads are sub se-
quent quantified meaning that they are assigned to transcripts to 
determine their abundance. Before quantified reads can exploited 
in downstream analysis, they are filter and normalized to account 
for possible technical biases and the differences in read depth. 
Normalization is essential since it makes quantified reads from 
different samples comparable. 

Model fitting and enrichment statistics 
In RNA-seq analysis, a model must be fitter to the count data 
prior to statistical analyses. Since the data consists of a number 
of counts aligned to a gene, it is discrete and therefore cannot be 
modelled as normal distribution. Poisson distribution and nega-
tive binomial distribution can be consider for count data obtained 
from an RNA-seq study since they are discrete probability distri-
butions [14]. The difference between these two models is that in 
the Poisson model mean and variance are assumed to be equal, 
whereas in the negative binomial model, mean and dispersion are 
estimated from the data. Moreover, the Poisson model is unable 
to account for biological variability which means that if there are 
differences in the abundance between samples, read counts will be 
over-dispersed relative to the model. Due to the over dispersion, 
the negative binomial model is generally used to model RNA-seq 
data, since it accounts for the variability and therefore captures 
over dispersion (Figure 3).

Fig. 3. Graphical Abstract.  RNA-seq data à gene expression • Single end data, 50 bp reads, as .fastq files • A bit “thinned”: 2 million raw reads per sample 
(=per file) 

Statistical scores for the enrichment, i.e. enrichment statistics, are 
obtaining either with a hypergeometric test [15]. Hypergeomet-
ric test uses the hypergeometric distribution instead of binomial 
distribution. The difference between binomial probability and hy-
pergeometric probability is that binomial picks are done “with re-
placement” and hypergeometric picks are done “without replace-
ment”. The conditional probability involved in picking “without 
replacement” needs to be taken into account. The GSEA uses an 

enrichment score that is obtained by adding to the score for every 
enrichment of a gene that matches the presence of a gene in that 
pathway and reducing it when there is a deregulation of a needed 
gene in that pathway.

Differential gene expression and pathway 
analysis
The aim of Differential Expression (DE) analysis is to identify 
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genes with the most substantial expression differences between 
two or more conditions by performing statistical analysis. In DE 
analysis, within-sample biases are assume to affect all samples 
similarly, and thus, are usually ignored [16]. However, non-uni-
formities between samples, such as sequencing depths and library 
sizes, cannot be disregarded because otherwise samples would not 
be comparable. Therefore, RNA-seq data can be represented by 
transformed quantities, such as RPKM (Reads per Kilo base per 
Million mapped reads) or FPKM (Fragments per Kilo base per 
Million mapped reads). Commonly used tools for differential ex-
pression analysis include edge R and DESeq2 both of which use 
negative binomial distribution to model gene counts [17, 18]. 
limma+voom is another method for conducting DE analysis, 

which is based on the linear model [19, 20]. 
Once differential expression analysis has been completed, a list of 
genes is obtained that contains information about their expression 
changes, i.e., what genes are significantly up- or downregulated as 
a result of a treatment. The purpose of a pathway analysis, also 
known as functional enrichment analysis, is to identify groups of 
genes that over-represented in the set of genes that have obtained 
from differential expression analysis [21]. This will help discover 
relevant biological themes to understand the phenomena that is 
being studied. An example of a tool that uses the GSEA algorithm 
for functional enrichment analysis is the GSEA tool itself. Anoth-
er tool that uses hypergeometric tests for the enrichment is enrich 
[22] (Figure 4).

Fig. 4. Vehicle (control), Dex (Dexamethasone, synthetic glucocorticoid), CpdA (Compound A, selective glucocorticoid receptor modulator)

Fig. 5. Per base quality scores prior to read trimming. The distribution of quality scores at each position in the read across all reads in the sample 
Dex_2h_rep1 are plotted in the graph. In the plot, the red line represents the median value, yellow box represents the inter-quartile range (25%-75%), 

the upper and lower whiskers represent the 10% and 90% points, and the blue line indicates the mean quality. The quality scores are shown on the y-axis 
and base pair position on the x-axis

MATERIALS AND METHODS
Cell culture:

The TNBC cell line MDA-MB-231 was obtained from the ameri-
can type culture collection and cultured in DMEM complete me-

dium. For hormone-responsive experiments, MDA-MB-231 cells 
were maintained in phenol red free medium with 5% charcoal-
stripped fetal bovine serum for 3 days and then treated with ve-
hicle and different ligands (Figure 5).

RNA-seq:

MDA-MB-231 cells treated with 100nM Dex or 10 mM CpdA 
for 2 and 4 h, respectively. RNA was extract using the RNeasy 
Mini Kit (Qiagen, Valencia, CA). Complementary DNA librar-

ies were construct using the Illumina Truseq RNA Sample Prep 
Kit according to the manufacturer’s protocol. Fifty base pairs of 
single-end reads were generate on the Illumina Hi Seq 2500 plat-
form with three multiplexed samples per lane (Figure 6).
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Fig. 6. Quality score distribution of sequences prior to read trimming. The plot represents the distribution of average quality scores in the sample 
Dex_2h_rep1. The average quality score is show on the x-axis and the number of sequences with the given average on the y-axis 

Fig. 7. Per base quality scores after read trimming. The distribution of quality scores at each position in the read across all reads in the sample Dex_2h_
rep1 after conducting read trim show in the plot. The quality scores on average rise in the lower quartile after discarding low quality bases from the 

reads

Sequence data processing and quality assessment: 

RNA-seq data was process from FASTQ files. The initial qual-
ity of raw reads was assessed using FastQC v.0.11.9. Low quality 
bases were trimmed from the reads using Trimmomatic v.0.40 

Read alignment: 

After read trimming, the resulting reads were aligned to the hu-
man reference genome GRCh38 using HISAT2 with parameters 
allowing two primary alignments and maximum and minimum 
mismatch penalties to be 6 and 2, respectively. SAM file outputs 

(TrimmomaticSE with parameters ILLUMINACLIP: TrueSeq3-
SE.fa:2:30:10 LEADING: 3 TRAILING:3 SLIDINGWIN-
DOW:4:15 MINLEN:33)26, and the quality of trimmed reads 
was inspected as previously (Figure 7).

from the aligner were convert into BAM files and index files were 
generat for them using SAMtools28. Alignment quality control 
was conduct using RSeQC v5.0.1 to check basic BAM statistics 
and read distribution statistics of each sample with bam_stat.py 
and read_distribution.py, respectively (Figure 8).
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Fig. 8. Quality score distribution of sequences after read trimming. The plot depicts the distribution of average quality scores in the sample Dex_2h_rep1 
after discarding low quality bases. Distributions of quality scores in other samples were almost identical to the provided example, meaning that all 

samples had only high-quality sequences left after read trimming was conducted

Fig. 9. A clustered heat map of center gene expression counts. Sample-level quality assessment included plotting of read counts of a subset of genes 
into a heat map to inspect and visualize differences in gene expression across the samples and genes. Red color indicates high gene expression and blue 

lower gene expression. Rows and columns were cluster by Euclidean distance

Read counting: 

Read counting of aligned reads conducted using feature Counts 
function from R package Rsubread v.1.34.730. For feature Counts 
parameters, the feature and attribute types were specified to be 
exon and gene_id, respectively, read counting was set as untraded, 
counting of multimapping reads or chimeric fragments were not 
allowed, the minimum mapping quality was required to be 0, and 
read summarization was performed at meta-feature level.  

Sample quality assessment:

For sample-level quality assessment, the gene expression counts 
were transform into normalized counts using variance Stabiliz-
ing Transformation function from Bioconductor R package DE-
Seq217. To identify differences between samples, outlier samples 
and other biases in the data, a Principal Component Analysis 
(PCA) was conducted using the function plotPCA from DE-
Seq2, and a heat map was generated from a subset of genes using 
the function Heat map from R package ComplexHeatmap31. 

Differential gene expression analysis:  

Differential expression analysis was conducted using R packages 

edgeR and limma from Bioconductor [18, 19], and followed the 
workflow described in Law et al. 201832. In brief, a DGEList ob-
ject was created from the counts table, and a separate data frame 
was added to it to contain information of gene annotations that 
were derived from Homo sapiens R package. Genes that were low-
ly expressed or had zero count across all samples, were removed 
using filterByExpr function. Gene expression distributions were 
normalized and unsupervised clustering was performed using the 
function plotMDS to inspect the effect of filtering on the simi-
larity of samples. Design matrix and contrasts were create using 
the functions model matrix and make contrasts, respectively. The 
function voom was used to remove heteroscedascity from count 
data and linear models were fitted for comparisons of interest 
using functions lmFit and contrasts fit. Empirical Bayes mod-
eration was carried out using the function eBayes. The number 
of DE genes and individual DE genes in each comparison were 
examined using decide tests and top table functions, respectively. 
Significantly differentially expressed genes were determined using 
adjusted p-value<0.05 (Figure 9).
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Pathway enrichment analysis: 

For the pathway enrichment analysis, genes with log-fold change 
≥ 1 or ≤ -1 were extracted from the list of differentially expressed 
genes. Enrichr was used to obtain enriched pathways for signifi-
cantly up and downregulated genes separately in each compari-
son22. From the Enrichr results, pathways from Reactome 2020 
database and disease from ClinVar 2019 database were studied 
closer. The analysis results were sorted by p-value. 

The source code:

https://github.com/abinarain/TranscriptomicsDexPaper

RESULT

Raw and trimmed read quality assessment
All the samples had 2,000,000 raw reads. Quality assessment of 
raw reads revealed an overall decent quality for all the samples. 
None of the samples had a notable drop in their base sequence 
qualities which would indicate a sequencing error Supplementary, 
and which would not however be unexpected for reads gener-
ated by Illumina sequencing. However, samples control_rep2, 
Dex_2h_rep1, and Dex_4h_rep1 had slightly better overall per 
base sequence quality compared to the three other samples. The 
majority of the reads in all samples had a high average quality score 
(Supplementary. Only samples Dex_2h_rep2, Dex_4h_rep2, and 
control_rep1 had few reads with average quality score between 
but since these reads do not represent a large proportion of the 

Quality assessment of trimmed reads concluded that all the 
samples had adequate quality to move on to subsequent data pro-
cessing steps without further adjustments to the read trimming 
parameters. Executed read trimming can be expect to increase 
the mapping accuracy and certainty in read alignment, since high-
quality sequencing reads are only left in the data.

Read alignment and quality assessment 
Approximately 98% of reads aligned to the reference genome in 
all samples (Table 1). From the aligned reads of all samples, ~83% 
aligned exactly one time referring to uniquely mapped reads, and 
~15% of reads were multi-mappers meaning that they mapped to 
more than one location in the genome. The assessment of the qual-
ity of aligned reads did not reveal any read counts that failed the 
quality control. The inspection of read distribution statistics re-
vealed that all samples had the highest number of tags in CDS ex-
ons meaning that most reads aligned to exons. The number of tags 
for CDS exons ranged approximately from 1,160 000 to 1,370 

data, it is not worrisome. Per base sequence, content failed for all 
samples in the Fast-QC reported which is normal for RNA-seq 
data due to the hexamer priming during library preparation [7-
9]. The distribution of per-sequence GC content followed closely 
the theoretical distribution in all samples meaning that there were 
no overrepresented sequences or contamination that would result 
in sharp or broader peaks, respectively. Samples control_rep1, 
Dex_2h_rep2, and Dex_4h_rep2 had higher sequence duplica-
tion levels compared to the three other samples. High duplication 
levels may be cause by too many cycles of PCR amplification or 
too little starting material. Two of the six samples, Dex_4h_rep1 
and Dex_4h_rep2, had overrepresented sequences that were iden-
tified to be adapter sequences and accounted for ~0.1% of the to-
tal number of sequences [23-26].

Read trimming discarded low quality bases and reads that were 
shorter than 33 bases, retaining 84% – 99% of reads in each 
sample (Table 1). More reads were discard from samples that had 
slightly worse initial quality, including samples Dex_2h_rep2, 
Dex_4h_rep2, and control_rep1. Read trimming improved all the 
quality aspects discussed above, except per base sequence content 
expectedly failed for all samples again. Per base sequence, quality 
improved, reads with low quality scores were discard and the num-
ber of duplicated reads decreased for the three aforementioned 
samples. Bases having quality score less than 21 were among the 
discarded bases Supplementary. Read trimming also discarded 
overrepresented sequences from Dex_4h_rep1 and Dex_4h_rep.

000. This observation is concordant with the studied data type. 

The high overall alignment rate is expected when aligning high 
quality reads to a high-quality reference genome. With high align-
ment rate, subsequent read counting can be done confidently and 
obtained read counts can be expected to represent the true expres-
sion of the genes with the obtained high quality alignments data 
processing can be continue to read counting without further in-
spections or adjustments to the HISAT2 parameters.

Gene-wise read counts
A total of 28 395 genes were considered in counting. All samples 
had approximately 66% successfully assigned alignments from 
total alignments, meaning that over half of the alignments were 
mapped to genes (Table 2). In all samples, reads remained unas-
signed due to multi mapping, no overlap with any feature, or over-
lap with two or more features.

Total Reads Trimmed Reads Aligned Reads

Dex_2h_rep1 2 000 000 1 983 162 1 943 741

Dex_2h_rep2 2 000 000 1 688 880 1 654 988

Dex_4h_rep1 2 000 000 1 975 678 1 924 248

Dex_4h_rep2 2 000 000 1 684 798 1 653 071

Control_rep1 2 000 000 1 642 890 1 642 890

Control_rep2 2 000 000 1 947 843 1 947 843

https://github.com/abinarain/TranscriptomicsDexPaper
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Tab. 2. Number of total and success-
fully assigned alignments in read 
counting 

Total Alignments Successfully Assigned Alignments

Dex_2h_rep1 2 280 798 1 524 203

Dex_2h_rep2 1 936 953 1 293 368

Dex_4h_rep1 2 274 735 1 489 497

Dex_4h_rep2 1 928 974 1 298 086

Control_rep1 1 934 461 1 281 261

Control_rep2 2 280 794 1 511 182

Sample quality assessment 
PCA placed the samples into three separate regions distinctively. 
PC1 explained 84% of the variation in the data and PC2 9%, 
meaning that samples that are further apart according to PC1 
in the plot differ more from each other in their gene expression 
compared to PC2. Samples that had treated with Dex for 2h and 
4h had the most similar gene expression, since the variation be-
tween them was most explain by PC2. In contrast, gene expression 
between Dex 4h and control samples varied more than between 
control and Dex 2h samples. The inspection of differences in gene 
expression across all samples using heatmap indicated similar dif-
ferences between samples Supplementary. Based on the PCA, dif-
ferences in gene expression can be expect, but a more substantial 
difference between control treatments and Dex treatments than 
between two Dex treatments. The greatest number of differential-

ly expressed genes can be expected to be detected between Dex 4h 
and control samples, since they are the furthest apart in the plot 
according to PC1 that explains the majority of the sample-wise 
variation. Observations from PCA indicate that all treatments 
should be compare with one another in DE analysis, since the 
samples can be, expect to differ from one another in their gene 
expression [27].

Differential gene expression analysis 
The counts table contained expression values for 28 395 genes of 
which 12 312 had zero count across all samples. Filtering of lowly 
expressed genes retained 10 247 genes, meaning that 18 148 genes 
were removed from that data due to zero or otherwise low expres-
sion values. The used filtering criteria was adequate according to 
figure 10.

Fig. 10. PCA plot. The plot depicts the similarity of samples before filtering lowly expressed genes

Unsupervised clustering of samples showed that filtering did not 
affect the similarity of samples (Figure 11). Even after filtering 
samples were separated according to the treatment distinctively, 

i.e., samples with the same treatment clustered close to each other
after conducting Multidimensional Scaling (MDS)[28, 29].
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Fig. 11. Log-cpm density plots before (A) and after filtering (B). The dashed line marks the cut-off log-cpm value, and the curves represent the densi-
ties of each sample. Genes that had average expression less than the cut-off value, determined by filter By Expr function with default parameters, were 
remove from the data. The majority of reads had zero or too low counts in the raw data, which is evident from the high peaks on the left of the cut-off 

value. Filtering center the densities meaning that enough genes with low expression were filter out from the data, making the peaks appear on the right 
of the cut-off value

Fig. 12. The MDS plot after filtering lowly expressed genes. Samples are separate by the treatment in the first and second dimension

DE genes in each comparison were determine by adjusted p-val-
ue<0.05. Examining the number of DE genes revealed a total of 
271 DE genes in the comparison between Dex 2h and Dex 4h, 

and of these 125 were downregulated and 146 were upregulated 
(Figure 12).

The comparison between Dex 2h and control had 393 DE genes of 
which 160 were downregulated and 233 were upregulated (Figure 
13). Lastly, the comparison between Dex 4h and control had the 
most DE genes, 890 DE genes of which 430 were downregulated 

and 460 were upregulated (Figure 14). The detected DE genes 
overlapped partly between different comparisons (Figure 15).
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Fig. 13. Mean-difference plots of expression data. The plots show the average log-expression and log-fold-change of genes in Dex 2h and Dex 4h com-
parison, Dex 2h and control comparison

Fig. 14. Mean-difference plots of expression data. The plots show the average log-expression and log-fold-change of genes in Dex 2h and Dex 4h com-
parison, Dex 4h and control comparison
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Fig. 15. Mean-difference plots of expression data. The plots show the average log-expression and log-fold-change of genes in Dex 2h and Dex 4h com-
parison, significantly up- and downregulated DE genes are highlight in red and green, respectively

Fig. 16. Venn-diagram of DE genes. 94 DE genes were common between all comparisons. Dex 2h and Dex 4h comparison had 9 and 143 common genes 
with Dex 2h and control, and Dex 4h and control comparisons, respectively. 257 genes were common between Dex 2h and control, and Dex 4h and 

control comparisons

In Dex 2h and Dex 4 h comparison, the top 5 statistically most 
significant DE genes were FKBP5, DNMP, VSTM2L, ACSL1, 
and MT2A. In Dex 2h and control comparison, the top 5 DE 
genes were FKBP5, TSC22D3, TXNIP, DDIT4, and ERRFI1. In 
Dex 4h and control comparison, the top 5 DE genes were FKBP5, 
TSC22D3, MT2A, DDIT4, and MT1E. The gene with the most 
significant expression change in all comparisons was FKBP5. 
However, it was downregulated in Dex 2h and Dex 4h compari-

son but upregulated in the two other ones, indicating that Dex 
increases its expression substantially in the studied breast cancer 
cells. The inspection of top 100 DE genes showed that their ex-
pression was similar in Dex treated samples but differed more in 
control samples, i.e., genes that were highly expressed in Dex treat-
ed samples had mostly considerably lower expression in control 
samples (Figure 16). All differentially expressed genes (adjusted 
p-value<0.05) are included in Supplementary Data [30, 31].

Pathway enrichment analysis 
For the enrichment analysis of functionality and disease asso-
ciation, DE genes with log-fold-change ≥ 1 or ≤ -1 were extract 
separately from each comparison (Supplementary Data). Dex 2h 
and Dex 4h comparison had 71 downregulated and 98 upregu-
lated genes that fulfilled the set requirements for log-fold-change. 

Dex 2h and control comparison had 181 upregulated and 116 
downregulated genes. Dex 4h and control comparison had 259, 
242 up, and downregulated genes, respectively. The enrichment 
analysis allowed the recognition of significant key functionalities 
and possible relations to diseases. Similar enrichment analysis was 
conduct for all extracted up or downregulated genes separately. In 
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Dex 2h and Dex 4 h comparison, the pathway analysis did not 
find any enriched pathways with adjusted p-value <0.05 for 
either up- or downregulated genes. In Dex 2h and control 
comparison, among up- and downregulated genes 18 and 43 of 
the enriched pathways, respectively, had adjusted p-value <0.05. 
Lastly, in Dex 4h and control comparison, 11 and 41 pathways 
found to be en-riche among up- and downregulated genes, 
respectively, with sta-tistical significance (adjusted p-value 

<0.05).
The results of the enrichment analysis for upregulated genes in 
Dex 4h and control comparison were studies closer. For the ex-
tracted 259 upregulated genes in this comparison, 11 pathways 
with adjusted p-value <0.05 were found to be enriched and were 
related to immune response, inflammation, or homeostasis (Fig-
ure 17).

Fig. 17. Heatmap of top 100 DE genes in Dex 4h and control comparison. The expression of statistically most significant genes in Dex 4h and control com-
parison is plotted as log-transformed CPM values (Log-CPM) over all samples. Red color indicates high gene expression and blue lower gene expression

Fig. 18. Statistically most significant pathways among upregulated DE genes in Dex 4h and control comparison. The graph represents the top 10 enriched 
pathways from the Reactome 2022 database

Fig. 19. Statistically significant diseases among upregulated DE genes in Dex 4h and control comparison. The graph represents the enriched diseases from 
the ClinVar 2019 database

The pathway analysis results for Dex 2h and control comparison 
did not differ drastically from Dex 4h and control, but similar 
pathways found to be enrich among the 181-upregulated genes. 
The inspection of possible enriched diseases among the upregu-

lated genes in Dex 4h and control revealed 5 related diseases that 
were statistically significant (adjusted p-value<0.05) (Figures 18 
and 19).
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DISCUSSION
In this experiment, the effect of Dex treatment on the expression 
of GR-regulated genes in breast cancer cells was study. The aim 
was to find biological pathways that were enrich among the dif-
ferentially expressed genes to help explain what gene groups are 
specifically affected by Dex treatment. A systematic description of 
the various bioinformatics steps was included for reproducibility. 
These steps included data pre-processing steps, i.e., quality control 
before and after trimming, read trimming, read alignment, and 
read counting, as well as differential gene expression analysis for 
the identification of genes that changed their expression due to 
Dex treatment, and functional enrichment analysis. The study 
showed that Dex truly causes the upregulation of distinct gene 
groups and downregulation of others meaning that the cell’s tran-
scriptome is altered because of Dex treatment [32].

Results of the DE analysis showed that Dex treatment causes both 
up and downregulation of genes in breast cancer cells. Compari-
son of the number of DE genes showed that longer exposure to 
Dex induces the transcription of greater numbers of genes com-
pared to the normal state, i.e., non-treated cells. Treatment of 
studied breast cancer cells with Dex for 4h almost doubled the 
number of DE genes compared to 2h Dex treatment.

The obtained results from the pathway enrichment analysis in-
dicate that Dex increases the expression of genes in breast cancer 
cells that are relevant for immune response and inflammatory re-
actions. GCs known to be involved in the regulation of a diverse 
set of processes, including the two above-mentioned processes 1. 
Since Dex is a synthetic corticosteroid and binds to the GR in 
place of natural glucocorticoids, it can be expected to induce the 
activation of GR, and thereby, cause changes in the transcriptional 
state of GR-regulated genes leading to the activation of pathways 
that are regulated by GCs. Few diseases are also possibly related to 
Dex treatment. The examination of enriched diseases is particu-
larly important from a clinical perspective, since it can give indica-
tions of risks that exposure to Dex may bear. Since the study only 
included two biological replicates of each condition, it would be 
advisable to repeat the experiment with a higher number of rep-
licates to better account for biological variability. The analysis 
could also be repeat with different bioinformatics tools to see if 
the selection of tools and Third Generation Sequencing (TGS) 
greatly affects the obtained results. E.g., tools such as GSEA could 
be deploy for pathway enrichment analysis as it uses a different 
approach for the enrichment, i.e., stepwise score is calculated 
for every gene before assigning the final enrichment score 15. 
Overall, the conducted experiment gave insights into genes of 
which ex-pression is affect by the exposure to Dex and what 
functions those genes have. The gathered information may be 
clinically relevant to gain a better understanding of the effects of 
Dex in breast cancer treatments.

CONCLUSION
This paper provides a template of codes that can used for second 
generation sequencing technology to study RNA-Seq workflow 

using Python and R scripts doing statistics to extract meaningful 
information. With the advent of Third Generation Sequencing 
technology, the cost for Second Generation Sequencing technol-
ogy is bound to fall because of lower demand for it, but by no 
means would these technologies be useless for at least RNA-Seq 
transcriptomic work. Besides, scientists and technologists using 
third generation and beyond sequencing technology can well 
adapt or write a code keeping this work as a template. Thus, one 
of the main deliverable of this work has been the workflow code 
itself. Other observation from the Dex study has been clearly up-
regulation and down-regulation of sets of genes at different time 
intervals, which we call it as differential gene expression, such 
as in the breast cancer cells we studied, that made certain bio-
chemical pathways more active than the others as demonstrated 
in the downstream gene enrichment analysis, particularly where 
Dex and natural glucocorticoid binds Glucocorticoid Receptors 
(GRs), immune response, inflammation and homeostasis. Each of 
these pathways well studied for their beneficial and detrimental 
effect, which would be a subject for further investigation for Dex 
or Dex-like compounds. The examination of enriched diseases is 
particularly important from a clinical perspective, since it can give 
indications of risks that exposure to Dex or Dex-like compound 
may bear. Our main aim for this paper was to provide a RNA-
Seq bioinformatics work-flow where gene enrichment and path-
way enrichment has been clubbed along with the gene sequencing 
technology, although in the process we were also able to identify 
key pathways and candidate genes that play pivotal role when ex-
posing the breast cancer cells to synthetic corticosteroid. We have 
also been able to make a case that third or higher generation se-
quencing might not be having a very significant impact on RNA-
Seq transcriptomics analysis from what we are able to achieve by 
just the second generation sequencing technology, the price for 
which is expected to fall given the advent of third generation long 
read sequencing technology.
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