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INTRODUCTION

Stereotactic Radio Surgery (SRS) is a technique for treating 
tumors and other problems with the spine, lungs, liver, brain, 
neck, and other body parts by using a large number of perfectly 
focused radiation beams [1]. Instead, stereotactic radio surgery 
employs 3D imaging to precisely target high radiation doses to 
the afflicted region with little to no influence on the healthy 
tissue around it [2]. The brain and spine are routinely treated 
using stereotactic radio surgery in a single session. Lung, liver, 
adrenal, and other soft tissue malignancies are treated using body 
radio surgery, and therapy often entails many (3 to 5) sessions. 
Stereotactic Body Radiation (SBRT) or Stereotactic Ablative 
Radiotherapy (SABR) are alternate names for stereotactic radio 
surgery, which is a technique used to treat cancers beyond the 
brain. High-energy radiation is used in radiosurgery to eradicate 
cancers and other disorders [3]. Radiation beams are dismissed at 
your brain from equipment outside of your body. Beams with 
very high doses are used in radio surgery in order to destroy all the 
cells in the target region. To prevent harming healthy cells, the 
beams are precisely targeted and tightly focused. It is often 
administered as an isolated treatment on a single day, but it may 
also be divided into 2 to 5 sessions spread out over a week [4]. In 
place of open brain surgery, which needs an incision, radio surgery 
may be utilized. For treatment choices to be more successful and 
for patients to survive, brain tumors must be detected early. Brain 
tumors are difficult and time-consuming to physically identify 
from the many MRI image produced by standard clinical practice 
when diagnosing cancer [5]. Automatic brain tumor image 
segmentation is required. The article's goal is to provide an 
overview of techniques for brain tumor segmentation using MRI 
data. Due to their cutting-edge results and superior efficacy in 
resolving the problem compared to earlier strategies, DL 
algorithms have lately acquired appeal for automated 
segmentation [6]. DL techniques may be used to efficiently 
handle and objectively assess the massive amounts of MRI-based 
image data. Numerous review articles have previously been 
written about conventional techniques for segmenting MRI-
based brain tumor images. Unlike other articles, this one focuses 
on the area's most recent advancements in DL approaches. This 
section 1st gives a general review of brain tumors and how they are 
segmented [7]. These days, identifying brain tumors is an 
essential part of modern medical diagnosis [8]. For patients with 
brain tumors, early identification and tumor detection are crucial 
in order to increase patient survival. Due to the volumetric 

Background: A feature of medical image processing poses a significant 
barrier in brain tumor segmentation. Patients' chances of receiving effective 
therapy and of surviving their brain tumors are greatly enhanced by early 
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MRI images produced in clinical practice to make a cancer diagnosis is a 
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richness of the scan sample, MRI identification of brain tumors 
for cancer therapy requires extensive processing [9]. Clinical data 
processing is labor-intensive and time-consuming. Early 
identification and precise segmentation of the brain tumor region 
are thus crucial [10]. Study described a Deep Neural Networks 
(DNN)-based technique for totally autonomous brain tumor 
segmentation [11]. The proposed networks fit both low-grade 
and high-grade glioblastomas seen in MR imaging. Paper 
provided a unique Support Vector Machines (SVM)-based 
method for autonomously segmenting the optic nerves [12]. The 
presented approach outperformed state-of-the-art techniques in 
terms of resilience, accuracy, and processing time, demonstrating 
a suitable trade-off between these 3 factors. The neural network is 
trained and evaluated using the Multimodal Brain Tumor Image 
Segmentation Benchmark (BraTS) competition dataset from 
2017. The technique outperforms earlier studies, according on 
tests on datasets from the BraTS 2017 challenge [13]. Study 
examined several methods for MRI of the brain picture 
segmenting and detecting brain tumors [14]. Pre-processing 
stages are included in the phases for identifying brain tumors that 
have been addressed overall. Pre-processing includes a variety of 
processes, such as non-local diagnostic correction techniques, 
Markov random field techniques, and wavelet-based techniques.  
Research mentions that technique that expertly combines hand-
crafted features with CNN is recommended for completely 
automated brain tumor segmentation [15].  Paper highlights the 
presentation of a DL-based method for separating brain cancers 
from several MRI modalities [16]. When predicting the output 
label, the optional hybrid convolutional neural network 
architecture considers both contextual and local input using a 
patch-based method. The study uses a fuzzy K-means technique 
in conjunction with an artificial neural network to identify the 
tumor area. It comprises four stages: Attribute extraction and 
selection, noise evacuation, and Segmentation and classification 
[17]. To reduce the susceptibility of the approach to noise, non-
brain tissue is removed using morphological processes after 
adaptive Wiener filtering has been applied for denoising. Second, 
the Gaussian kernel-based fuzzy C-means method combined with 
K-means++ clustering is utilized to segment images [18].
Research provided a fully independent brain tumor diagnostic
model using morphological dilation, hole-filling, and a parameter-
free clustering technique [19]. The technique is applied to an
axial slice of the training dataset for BRATS 2015 using the T1c
modality. Article offered a way to plan radiation therapy for
glioblastomas by dividing brain tumors and several organs in peril
simultaneously [20]. The technique combines the use of
convolutional limited whole-brain segmentation using 
Boltzmann machines combined with a contrast-adaptive
generative model for tumor shape regularization [21].

In the study, an automated computer-based method for 
segmenting brain tumors is proposed. The network suggested in 
the article successfully defined the limits of the brain tumor area 
[22]. Study offered an automated profoundly Deep Neural 
Network (DNN) method for brain tumor segmentation using 
Magnetic Resonance Imaging (MRI) [23]. Employing the VGG-
16 system, robust tumor segmentation was expert through 
application of Fully Convolution Networks (FCN) with transfer 

learning. To investigate the advancement of automated methods 
for glioma brain tumor segmentation. It is also crucial to use the 
benchmark to accurately compare different models. As a result, 
the BraTS challenges from 2012 to 2019 evaluate the most 
modern methods [24]. Study created and test a two-stage DL 
method called MetNet for segmenting brain metastases in MRI 
images taken prior to therapy [25]. Article employed a novel 
asymmetric UNet (asym-UNet) architecture to increase the 
precision of automated techniques used to identify Brain 
Metastases (BM) [26]. Possessing one up-sampling arm and 2 
down-sampling arms, the end-to-end asymmetric 3D-UNet 
architecture was used to collect the images features. Work 
proposed an effective method that uses the threshold 
segmentation approach and then performs a few morphological 
procedures [27]. First, the quality of the MRI image is enhanced. 
Next, the pixels are divided into groups using threshold 
segmentation. Finally, the region of the picture containing the 
tumor with the highest intensity is determined using 
morphological operators. 

MATERIALS AND METHODS 
In this paper, used a clinical dataset from stereotactic radiosurgery 
to assess cutting-edge DL segmentation methods. Here, suggested 
a unique HADF-CNN strategy for dividing up brain tumors 
using DL segmentation. Figure 1 depicts the HADF-CNN 
process. 

Dataset 
The clinical stereotactic radio surgery, collected dataset were 
2411 patients who underwent 2578 therapy courses. 2036 of 
these treatment regimens, involving 1921 individuals, were 
intracranial. 

The patients included had access to contrast-enhanced T1-
weighted (T1+C) MRI imaging and were receiving their first 
Software Requirements Specification (SRS). In the end, dataset 
had 1688 patients. Their data was arbitrarily divided into training 
and test sets (Table 1). However, because neither a tumor nor a 
vascular abnormality is appropriate therapeutic options for 
trigeminal neuralgia patients, all of their data were included in the 
training set. 

The target and axial T1+C MRI were both taken out of the 
treatment planning system for each patient. The majority of the 
time, a radiation oncologist assessed the targets after a 
neurosurgeon contoured them. On occasion, the targets were 
contoured by a single radiation oncologist without a second 
doctor's evaluation. More than one target may be present in an 
imaging volume, especially in patients with brain metastases. 
Tumor contours were kept in CT coordinates after Prior to 
contouring, data volumes had been assigned to CT volumes. To 
convert the tumor labels into MRI coordinates, an inverse 
transformation was required. Alternatively put, volumes were 
resampled rather than immediately cropped on grids with various 
voxel counts. Names, birthdates, and location information were 
stripped from the images before they were recorded in Clinical 
diagnoses data format. 



Fig. 1. Flow of the proposed methodology 

Varieties of Brain Lesions  Train Test 

Metastases 504 55 

Schwannoma 309 20 

Meningioma 317 29 

Arteriovenous malformation 83 6 

Pituitary tumor 147 8 

Other tumors 172 15 

Trigeminal neuralgia 41 0 

Total 1669 132 

These image/label pairings used for instruction and assessing 
Deep Neural Networks (DNN) after registration and de-
identification. With slice thicknesses of 1 mm-2 mm, the pictures 
were shown as native axial slices. Since the slices might 
occasionally only partially cover the region of interest, the 
number of slices ranged from 30 to 233. The lowest in-plane 
resolution was 197 × 197, while the average was 512 × 512. 
Typically, 300 mm in the x-y plane, however it might be as large 
as 350 mm. The majority of the pixels were 0.5859 mm2 ×
 0.5859 mm2, however some photos with lesser quality had pixels 
that were 1.1719 mm2 × 1.1719 mm2. These 1688 picture sets 
had a totally of 2568 different targets. The intended volumes 
ranged from 20,646,646 mm3, with 3696 mm3 for the mean and 
6637 mm3 for the median. There was a single target present 
throughout 1013 image sets. In a single image collection, there 
may be up to 34 targets. 

Preprocessing median filter 
The MF is a nonlinear signal processing technique with a 
statistical foundation. Since the median filter applies to images 
with random noise, it is a nonlinear filter that is challenging to 
analytically evaluate. A normal distribution image with zero mean 
noise has a very little noise variance in the MF.

σmed2 = 1
4me2(m)

≈
σj
2

m+π2−1
π
2

(1)

Where σ02 how big the MF mask is, σ02 is input power of noise (the 
variance), and (𝑚𝑚𝑚𝑚 is function about noise density).  

σ02 = 1
m
σj2    (2) 

By comparing (1) and (2), it is evident that the effect of median 
filtering is dependent on both the mask's size and the noise 
distribution. The median filter reduces random noise far better 
than average filtering, even if impulsive noise, particularly slender 
pulses, are spaced longer separately and have a reduced pulse width 
in comparison to 2/n. Given the capabilities of the average and 
median filtering algorithms of adjusting the mask size in response 
to the noise density, the performance of the median filtering should 
be enhanced. 

Hyper Automated Densely Fused Convolutional 
Neural Network (HADF-CNN) 
The issue of vanishing/exploding gradients is one that deep 
architectures have; this problem prevents convergence during 
training. The research in examined densely linked networks to 
address these issues in incredibly deep structures. Dense Nets 
work on the fundamental tenet that training is made easier and 
more effective when direct connections are established in a feed-
forward manner from all layers to each subsequent layer. This is 
founded on three observations. Initially, given that every feature 
map in the design has a short path, a thorough supervision is 
implied. Second, the network's overall information flow and 
gradients are improved through direct connections between all 
levels. Third, the regularizing impact of dense connections is to 
lessen the probability of excessive fitting on issues with fewer 
training sets. Let 𝑣𝑣𝑘𝑘−1represent the 1th layer's output. This vector 
is often acquired from the preceding layer's output in CNNs. 

𝑣𝑣𝑘𝑘−1by a mapping 𝑣𝑣_𝑘𝑘 consisting of a non-linear activation 
function after a convolution: 

Tab. 1. Clinical diagnosis in the final 
dataset for 1688 patients 
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 vk = Gk(vk−1)   (3) 

All feature outputs in a highly linked network are feed-forward 
concatenated. 

vk = Gk��vk−1, vk−2,….vk−0��,   (4) 

Hyperdense Net extends this idea by adding a more 
comprehensive concept of connectedness, as join layer outputs 
from many streams, each of which is associated with a distinct 
type of visual procedure. Within the framework of several modes, 
the hyper automated densely fused CNN offers a feature 
representation that is far more powerful than early/late fusion 
because the network comprehends the intricate connections that 
exist within and among each level of encapsulation. While 
development to 𝑁𝑁 modes is straightforward, let's concentrate on 
the situation of two picture modalities for simplicity's sake. 
Where, 𝑣𝑣𝑘𝑘−11 and v𝑣𝑣𝑘𝑘−2,

2 stand for the 1th layer outputs in streams 
3 and 4, respectively. Following is a general definition of the result 
of layer 𝐿𝐿 in a stream: 

vkt = Gk
t ��vk−11 , vk−2,

2 vk−21 , vk−22 , … , v01, v02��   (5) 

Recent research has shown that reordering and interlacing the 
CNN's feature map components is a potent regularize that 
improves effectiveness and performance. In the process of 
deterministic adjustments to increase efficiency, intermediary 
CNN layers may, regrettably, lose some crucial information. To 
address this problem, intermediary layers should provide many 
channels of information exchange while maintaining the 
deterministic functions that were previously mentioned. This 
idea prompts us to join feature maps in a different order for every 
branch and layer. 

𝑣𝑣𝑘𝑘𝑡𝑡 = 𝐺𝐺𝑘𝑘𝑡𝑡�𝜋𝜋𝑘𝑘𝑡𝑡 ([𝑣𝑣𝑘𝑘−11 , 𝑣𝑣𝑘𝑘−12 , 𝑣𝑣𝑘𝑘−22 , … , 𝑣𝑣01, 𝑣𝑣02])�     (6) 

For instance, it may have two picture modalities and 

vk1 = Gk
1([vk−11 , vk−12 , vk−11 , vk−22 , … , v01, v02])   (7) 

The strong arrows depict the corresponding correlations among 
feature maps with various layers, inside and across the different 
streams, noting that only convolution operations are indicated by 
the red arrows. The outputs of all the prior layers from the 
𝐺𝐺𝑘𝑘1 route is concatenated to form each convolutional block's 
input. Next, a total about pseudo-randomly initialized SVM are 
present, each of which learns to extract one feature,𝑣𝑣𝑘𝑘−12 , from an 
input pattern, 𝑣𝑣𝑘𝑘−11 . The primary support vector machine, or 
SVM, uses the extracted feature vector as input and tries to 
estimate the target function. To use the following methods to 
determine the input vector 𝑣𝑣𝑘𝑘−11  feature-layer representation: 

𝑣𝑣𝑘𝑘1 = 𝐺𝐺𝑘𝑘2([𝑣𝑣𝑘𝑘−12 , 𝑣𝑣𝑘𝑘−11 , 𝑣𝑣𝑘𝑘−12 , 𝑣𝑣𝑘𝑘−21 , … , 𝑣𝑣02, 𝑣𝑣01])    (8) 

The feature maps from different levels, both inside and outside of 
the numerous streams, are directly connected the red arrows only 
depict convolution processes, as opposed to the black arrows' 
representation. 

Classification using Deep Support Vector 
Machine (DSVM)  
The DSVM is a prominent type of machine learning algorithm 
for categorization issues. It’s a variant of the conventional SVM 
technique, the input and output layers are combined with many 
non-linear transformation layers. A deep DSVM, every input 
data is first transformed through a series of non-linear 
transformations, which are typically implemented using neural 
network layers. A typical DSVM classifier receives the output 
from these layers, which makes the final prediction. The 
learning algorithm uses a min-max method to modify the 
DSVM co offends of all DSVMs. 

Creating the dual objective W for the primary DSVM 

minmax
𝑔𝑔(𝑣𝑣)𝛼𝛼,𝛼𝛼∗

𝑈𝑈�𝑔𝑔(𝑣𝑣),𝛼𝛼(∗)� = −𝜀𝜀 ∑ �𝛼𝛼𝑗𝑗∗ + 𝛼𝛼𝑗𝑗� + ∑ �𝛼𝛼𝑗𝑗∗ +𝑘𝑘
𝑗𝑗=1

𝑘𝑘
𝑗𝑗=1

𝛼𝛼𝑗𝑗�𝑧𝑧𝑗𝑗(9) 

1
2
∑ �αj∗ + αj�(αi∗ + αi)L �g�vj�, g(vi)�k
j,i=1     (10) 

α(∗)(Standing for all αj∗and αj)toward a 

(Local) maximum of U, where ⋌ is the learning rate: 

αj
(∗) ← αj

(∗) +⋌. ∂U/ ∂αj
(∗)   (11) 

The resulting gradient ascent learning rule for αj is: 

αj = αj +⋌ �−ϵ − zj + ∑ �αj
(∗) − αi� Li �g�vj�, g(vi)�          (12) 

L �g�vj�, g(vi)� = exp�−∑
�g�vj�b,g(vi)b�

2

σnα �   (13) 

Utilizing a method analogous to back propagation, the system 
creates a fresh dataset for each feature layer DSVM  

�vj, g�vj�b − μ.
δU

δe�vj�a
� 

where denotes a learning rate, 

δU/δe�vj�a      (14) 

Is given by: 

δU
δe�vj�b

= �αi∗ − αj� �g�vj�b, g(vi)b�  (15) 

L �g�vj�b, g(vi)b�    (16) 

The main DSVM and feature layer SVMs are trained 
alternately over several epochs after the feature extraction 
SVMs are pseudo-randomly started. The average mistakes are 
used to calculate the bias values. 

RESULTS 
Radio surgery is a treatment option for both small malignant 
and benign (noncancerous) brain tumors. Here, to contrast 
the suggested approach with a few of the current approaches, 
including Deeper ResU-net, RGB-D, and U-Net. 
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Dice coefficient 
One mathematical measure that is frequently utilized in 
medical imaging is the dice coefficient, including the analysis of 
brain lesions. Specifically, the similarity between two sets of 
data is gauged using the Dice coefficient. The results of the 

suggested procedure are contrasted with those of the 
conventional techniques in figure 2 and table 2. Figure 2 shows 
that the dice of the recommended methodology are higher than 
those of the traditional ways. 

Fig. 2. Computation analysis of dice coefficient 

Deeper ResU-net [28] RGB-D [29] U-Net [30] HADF-CNN [Proposed] 

Metastasis 0.42 0.52 0.58 0.66 

Meningioma 0.41 0.4 0.42 0.68 

Schwannoma 0.48 0.45 0.43 0.69 

Pituitary 0.22 0.21 0.15 0.3 

AVM 0.23 0.2 0.23 0.26 

Sensitivity 
The sensitivity is the proportion of actual positive results (for 
example, a sensitivity of 90% means that 90% of those who have 
brain tumor illness will test positive). The proportion of actual 
negative results is known as specificity (for example, ninety 
percent of individuals who do not possess the target ailment 
will test negative, according to the 90% specificity). The 
accuracy of the suggested strategy is contrasted with the 
conventional methods in figure 3 and table 3. In comparison to 

traditional approaches, figure 3 demonstrates that the suggested 
method has a higher sensitivity. 

Precision 
Precision in the context of brain tumors refers to the accuracy 
of a diagnostic or treatment method in identifying or targeting 
cancerous tissue while minimizing damage to healthy brain 
tissue. Table 4 presents a comparison between the precision of 
the suggested method and the conventional approaches. Figure 
4 illustrates how the precision of the suggested technique is 
higher than that of traditional methods.

Fig. 3. Computation analysis of sensitivity 

Tab. 2. Computation analysis of dice 
coefficient
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Deeper ResU-net [28] RGB-D [29] U-NET [30] HADF-CNN [Proposed] 

Metastasis 0.27 0.49 0.51 0.77 

Meningioma 0.28 0.48 0.52 0.69 

Schwannoma 0.75 0.78 0.78 0.8 

Pituitary 0.28 0.26 0.28 0.49 

AVM 0.17 0.2 0.19 0.28 

Deeper ResU-net [28] RGB-D [29] U-NET [30] HADF-CNN [Proposed] 

Metastasis 0.6 0.62 0.61 0.77 

Meningioma 0.47 0.49 0.43 0.65 

Schwannoma 0.46 0.43 0.59 0.6 

Pituitary 0.2 0.24 0.41 0.45 

AVM 0.23 0.25 0.43 0.58 

Fig. 4. Computation analysis of precision 

CONCLUSIONS 

In this study, suggested a hyper automated densely fused 
convolutional neural network to categorize brain tumors. To 
analyze the efficiency of the proposed method, data were 
gathered and preprocessed using median filter. Next, the brain 
data is segmented using the proposed method. The brain 
tumor categorization process makes use of the DSVM.  The 

design of the proposed technique is comparable to CNN, but 
it uses less power and processes huge images in a reasonable 
amount of time. Additionally, compared to conventional 
classifiers, the proposed classifier demonstrates greater 
accuracy.  

Tab. 3. Computation analysis of 
sensitivity 

Tab. 4. Computation analysis of 
precision 
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