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The glucose metabolisms and serum lipids are assumed as possible 
intermediary mechanisms in linking breast cancer (BC) and obesity. The 
current report examines the associations between diabetes mellitus (DM) 
markers (glucose and insulin) and BC markers (monocyte chemoattractant 
protein-1 (MCP-1), resistin, adiponectin, leptin). The glucose model shows 
that mean glucose levels are higher for breast cancer women (p=0.0222) 
then normal. Mean glucose levels are positively associated with leptin 
(p<0.0001) and homeostasis model assessment score insulin resistance 
(HOMA-IR) (p<0.0001), while they are negatively associated with 
interaction effects HOMA-IR*leptin (p<0.0001) and leptin*adiponectin 
(p=0.0883). On the other hand, variance of glucose levels is positively 
associated with HOMA-IR (p<0.0001) and resistin (p=0.0218), while 
it is negatively associated with leptin (p<0.0001), MCP-1 (p=0.0115). 
Insulin model shows that mean insulin levels are positively associated 
with HOM-IR (p<0.0001), leptin (p=0.0009), age*MCP-1 (p=0.0909), 
glucose*adiponectin (p=0.0424), glucose*resistin (p<0.0001), HOMA-
IR*MCP-1 (p<0.0001), while they are negatively associated with MCP-1 
(p=0.0264), resistin (p<0.0001), adiponectin(p=0.0783), glucose*HOMA-
IR (p<0.0001), leptin*adiponectin (p=0.0713). The variance of insulin 
levels is higher for breast cancer women (p=0.0003) than normal. Again, 
it is positively associated with MCP-1 (p=0.0014), HOMA-IR (p<0.0001), 
while it is negatively associated with leptin (p=0.0828) and glucose*MCP-1 
(p=0.0003). Many more relationships between BC and DM markers are 
also reported in the current article. It is concluded that both DM and BC 
markers have very complex closely interlinked relationships.
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Cancer and diabetes are common diseases with a terrible 
impact on human health worldwide. Epidemiologic studies 
have shown that people with Diabetes Mellitus (DM) are at 
significantly greater risk for many types of cancer [1-4]. Many 
research articles have shown that there is a positive link between 
overweight (obesity, or Body Mass Index (BMI)) and severity 
of breast cancer (BC) [5-7]. A recent article has shown the 
relationship between BMI and BC markers [7]. Association 
between the metabolic syndrome and BC prognosis has been 
reported [8, 9]. Note that metabolic syndrome is known as a 
combination of at least three of the following metabolic risks 
such as elevated serum triglycerides, visceral obesity, reduced 
high-density lipoprotein cholesterol, raised serum glucose, 
raised blood pressure [8]. Despite records from in vitro 
research [10-13], the definite underlying mechanisms of the 
link between metabolic syndrome, BC progression and obesity 
have yet to be fully elucidated, and earlier epidemiological 
research findings remain contradicting [12-16]. For the above 
association, a mechanism suggests that it is due to increased 
estrogen levels (sourced from the fat in adipose tissue), which 
are synthesized from cholesterol [17]. Insulin-like Growth 
Factors (IGF), glucose metabolisms, leptin, resistin, and lipid 
have also been postulated as possible intermediate mechanisms 
which are responsible for correlation between obesity and BC 
risk [9, 11, 13, 18-20]. A positive correlation between BC 
risk and triglycerides has been pointed [16]. In addition, the 
unfavourable hormonal profile (e.g., leptin, or estrogen, elevated 
insulin) is correlated with low levels of high-density lipoprotein 
which is assumed to increase BC risk [19, 20].

Most of the previous cancer epidemiological studies are 
based on Cox model analyses [4], Kaplan Meier analysis [20], 
Logistic regression, basic statistics such as simple correlation and 
regression [1, 8, 14, 16], which are not appropriate statistical 
approach for deriving associations of physiological positive, 
heterogeneous, non-normal continuous variables. Moreover, 
the best of our knowledge, very little research articles have 
considered both the DM and BC markers to find their inter-
relationships. Earlier cancer epidemiological research findings 
regarding the associations between DM and BC markers remain 
contradicting [12-16]. Therefore, this report aims to give a 
clear knowledge regarding the inter-relationships between DM 
markers (glucose and insulin) and BC markers (monocyte 
chemoattractant protein-1 (MCP-1), resistin, adiponectin, 
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leptin) based on probabilistic modeling. The current report 
derives all the findings herein based on the probabilistic 
models of glucose (derived herein), insulin (derived herein), 
monocyte chemoattractant protein-1 (MCP-1) [21], resistin 
[22], adiponectin [23] and leptin [24]. Only the two models 
of glucose and insulin levels are derived in the report, while the 
other four models of BC markers such as MCP-1, resistin, leptin, 
and adiponectin have already been published. The associations 
between BC and DM markers are reported herein based on the 
above six models and the published four models of BC markers 
are not shown herein. Interested readers can go through them 
[21-24]. 

MATERIALS AND METHODS 

Materials
Participants and study design: Initially total of 154 

Portuguese women newly diagnosed with Breast Cancer 
(BC) were selected from the Gynaecology Department of the 
University Hospital Centre of Coimbra (CHUC) between 
2009 and 2013. The selected women had been classified into 
four experimental groups based on their Body Mass Index (BMI) 
and the presence or absence of breast cancer (BC). The four 
groups are: (1) control with BMI<25 kg/m2, n=29 (without 
overweight) (CT); (2) control with BMI>25 kg/m2, n=48 
(with overweight) (CTOW); (3) breast cancer with BMI<25 
kg/ m2, n=30 (without overweight) (BC); and (4) breast cancer 
with BMI>25 kg/m2, n=47 (with overweight) (BCOW). 
The control subjects (without overweight) (CT group) were 
recruited at the Internal Medicine Department in annual check-
up of the aforementioned hospital. Women (with overweight) 
of the CTOW group were also recruited at this Department, 
in their first Nutrition consultation. They were all considered 
in the study if they had never been diagnosed with malignant 
disease or benign nor have family history of BC.

Patients of BC and BCOW groups were recruited and 
surgically treated at the Gynaecology Department of CHUC. 
These women had been newly diagnosed with breast cancer 
from positive mammography and had histologically confirmed 
BC without prior cancer treatment. All recruited women were 
free from any acute or another infectious disease at the time of 
study enrolment. The same research physician collected all the 
clinical information (family medical history and personal) as 
well as anthropometric data (weight and height) each of the 
selected women during the first consultation.

Selected women were thought postmenopausal at blood 
collection time if they were reported a bilateral oophorectomy or 
at least 12 months after menopause. During the first consultation, 
fasting blood samples were collected by a venous puncture for 
biochemical analysis, which was performed by the same nurse, 
and immediately they were delivered to the Laboratory of 
Physiology of the Faculty of Medicine. The study was approved 
by the CHUC Ethical Committee, and all women under the 
study gave their written informed consent prior to entering the 
study. Finally, a total of 116 (out of which 64 women with BC 
and 52 control healthy women) were considered in the present 
study, and the remaining 38 participants were excluded from the 
study due to having BMI above 40 kg/m2.

The data set is available in the UCI Machine Learning 

Repository, and its detailed description is given in [25, 26]. For 
immediate using of the covariates in the report, these are restated 
as Body mass index (BMI) (kg/m2), Age, Homeostasis Model 
Assessment Score Insulin Resistance (HOMA-IR), Insulin (μU/
mL) (INSU), Glucose (mg/dL) (GLUC), Adiponectin (μg/mL) 
(ADIP), Resistin (ng/mL) (RESI), Monocyte Chemoattractant 
Protein-1 (MCP-1), Leptin(ng/mL) (LEPT), Types of Patient 
(TYOP) (1=healthy controls; 2=patients).

Statistical methods
The considered data set given in [25, 26] is a multivariate 

data set. The interesting responses are glucose, insulin, MCP-1, 
resistin, adiponectin, leptin which are all positive continuous 
heterogeneous and non-normally distributed, which are required 
to be modeled herein. These can be appropriately modeled using 
Joint Generalized Linear Models ( JGLMs) adopting both the 
Log-normal and Gamma distributions, which are clearly given 
in [21, 27-29]. Both the JGLMs under the Log-normal and 
Gamma distributions are very shortly given in a recent article 
[21], which are not reproduced herein. For more discussions 
on JGLMs, readers can visit [27, 29]. Models for MCP-1 [21], 
resistin [22], adiponectin [23] and leptin [24] have already been 
reported. This report derives the models for glucose and insulin 
using JGLMs under both the distributions.

Statistical and graphical analysis
The random variable glucose (separately for insulin) is 

considered as the dependent variable and the remaining others 
are considered as the independent variables. As the interested 
response glucose (separately for insulin) is not stabilized by 
any sui transformation, so it has been jointly modeled by both 
Log-normal and Gamma JGLMs. The final models have been 
accepted depending on the lowest Akaike Information Criterion 
(AIC) value (within each class), which minimizes both the 
squared error loss and predicted additive errors [30]. Some 
insignificant or partially significant effects are included in both 
the models due to the marginality rule given by Nelder [31] and 
also for better fitting [30]. Note that partially significant effects 
are recognized as a confounder in Epidemiology. The analyses 
outcomes for glucose and insulin levels are presented in 1 and 
2, respectively. For both the responses (glucose and insulin 
levels), Gamma fit (for glucose AIC=771.873) (for insulin 
AIC=318.773) gives better than Log-normal fit (for glucose 
AIC=772.5) (for insulin AIC=396.0).

Data produced probabilistic model should be verified by 
model diagnostic tools before considering it as the valid final 
model, which interprets all valid conclusions. The derived 
Gamma fitted models for glucose and insulin (in Tables 1 and 
2) have been verified by model diagnostic plots in Figures 1 and 
2, respectively. In Figure 1a, the glucose Gamma fitted (Table 
1) absolute residuals are plotted against the fitted values, where 
all the absolute residuals are randomly located at a point, except 
only two points. Figure 1a is exactly a flat straight line except 
the right tail, which is increasing as a larger residual is located 
at the right boundary. This shows that variance is constant with 
the running means. Figure 1b presents the mean glucose Gamma 
fitted normal probability plot (Table 1), which does not reveal 
any fit discrepancy. Thus, Figure 1a and 1b have confirmed that 
Gamma fitted glucose models are approximately true mode 
(Table 1). In Figure 2a, the insulin Gamma fitted (Table 2) 
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Tab. 1. Results for mean and 
dispersion models for glucose 
from Gamma and log-normal fit

Model Variables
Gamma fit Log-normal fit

Estimate s.e. t-value p-value Estimate s.e. t-value p-value

Mean

Constant 4.3933 0.0202 218.02 <0.0001 4.3907 0.0199 220.87 <0.0001
INSU -0.128 0.0057 -22.58 <0.0001 -0.1282 0.0055 -23.16 <0.0001

HOMA-IR 0.6248 0.0284 22.03 <0.0001 0.6265 0.028 22.38 <0.0001
TYOP 0.0216 0.0093 2.32 0.0222 0.0197 0.0091 2.17 0.0322
LEPT 0.0035 0.0006 6.21 <0.0001 0.0035 0.0005 6.61 <0.0001

HOMA-IR 
*LEPT -0.0017 0.0002 -7.12 <0.0001 -0.0017 0.0002 -7.3 <0.0001

ADIP 0.0009 0.0012 0.78 0.4371 0.0009 0.0011 0.76 0.4489
LEPT*ADIP -0.0001 0.0001 -1.72 0.0883 -0.0001 0.0001 -1.7 0.092

Disper-
sion

Constant -8.844 1.0191 -8.678 <0.0001 -8.938 1.0467 -8.539 <0.0001
Age 0.053 0.016 3.313 0.0013 0.055 0.0163 3.384 0.001

HOMA-IR 2.005 0.3925 5.108 <0.0001 2.201 0.4058 5.424 <0.0001
Age* 

HOMA-IR -0.007 0.0034 -2.186 0.031 -0.008 0.0035 -2.222 0.0284

INSU -0.162 0.0647 -2.51 0.0136 -0.204 0.0657 -3.112 0.0024
LEPT -0.039 0.0092 -4.29 <0.0001 -0.042 0.0093 -4.493 <0.0001
REST 0.129 0.0553 2.327 0.0218 0.136 0.0563 2.413 0.0175

Age* REST -0.002 0.0009 -2.082 0.0397 -0.002 0.0009 -2.22 0.0285
INSU* 

HOMA-IR -0.011 0.0028 -3.793 0.0002 -0.01 0.003 -3.491 0.0007

MCP-1 -0.001 0.0005 -2.571 0.0115 -0.001 0.0005 -2.394 0.0184
AIC 771.873 772.5

Fig. 1. For the joint Gamma fitted models of glucose level (1), the (a): absolute residuals plot with respect to the fitted values, and; (b): the normal 
probability plot for the mean model

Fig. 2. For the joint Gamma fitted models of insulin level (2), the (a): absolute residuals plot with respect to the fitted values, and; (b): the normal 
probability plot for the mean model

absolute residuals are plotted against the fitted values, where all 
residuals are located at a point randomly, except a lower absolute 
residual located at the right boundary. So, the right tail of Figure 
2a is decreasing. Figure 2b presents the mean insulin Gamma 
fitted normal probability plot (Table 2), which reveals no lack 
of fit. Similarly, Figure 2a and 2b have confirmed that Gamma 

fitted insulin models are approximately true mode (Table 2).

RESULTS 
Summarized JGLMs results for glucose and insulin analyses 

are displayed in Tables 1 and 2, respectively. The fitted glucose 
model (Table 1) shows that mean glucose levels are higher for 
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Gamma fitted glucose mean ( µ̂ ) model (from 1) is µ̂
=exp(4.3933–0.1280 INSU+0.6284 HOMA-IR+0.0216 
TYOP+0.0035 LEPT–0.0017 HOMA-IR*LEPT+0.0009 
ADIP–0.0001 LEPT*ADIP), and the Gamma fitted glucose 
variance ( ˆ 2σ ) model (from 1) is ˆ 2σ =exp(-8,844 + 0.053 
Age+2.005 HOMA-I–0.007 Age*HOMA-IR–0.162 
INSU–0.039 LEPT+0.129 REST–0.002 Age*REST–0.011 
INSU*HOMA-IR–0.001 MCP-1).

Gamma fitted insulin mean ( µ̂ ) model (from 2) is µ̂
=exp(0.6686–0.0028 Age+1.3240 HOMA-IR–0.0004 MCP-
1+0.0001 Age*MCP-1 +0.0295 BMI–0.0157 BMI*HOMA-
IR- 0.0329 REST-0.0028 GLUC–0.0047 GLUC*HOMA-
IR–0.0271 ADIP+0.0004 GLUC*ADIP + 0.0003 
GLUC*REST +0.0001 HOMA-IR*MCP-1+0.0048 LEPT- 
0.0002 LEPT*ADIP), and the Gamma fitted insulin variance (
ˆ 2σ ) model (from 2) is ˆ 2σ =exp(–3.7550–0.0215 Age+0.0037 

GLUC+0.007 MCP-1–0.0001 GLUC*MCP-1 +0.4168 
HOMA-IR–0.014 LEPT+1.1652 TYOP).

For this data set, the models for BC markers such as MCP-1 
[21], resistin [22], adiponectin [23] and leptin [24], and model 
for BMI [7] have already been published. 

DISCUSSION
Inter-relationships between DM and BC markers are 

reported herein from the models of DM markers such as glucose 
and insulin, as well as from the models of BC markers such as 
MCP-1, resistin, leptin, and adiponectin. Models of these BC 
markers are reported in [21-24], while models of DM markers 
are reported herein 1 and 2. 

Fitted glucose model (1) shows that the Mean Glucose Level 

breast cancer women (p=0.0222) than normal. Glucose levels 
are positively associated with leptin (p<0.0001) and HOMA-IR 
(p<0.0001), while they are negatively associated with interaction 
effects HOMA-IR*leptin (p<0.0001) and leptin*adiponectin 
(p=0.0883). On the other hand, variance of glucose levels is 
positively associated with HOMA-IR (p<0.0001) and resistin 
(p=0.0218), while it is negatively associated with leptin 
(p<0.0001), MCP-1 (p=0.0115), age*HOMA-IR (p=0.0310), 
age*resistin (p=0.0397), HOMA-IR*insulin (p=0.0002).

Insulin model shows that mean insulin levels are 
positively associated with HOM-IR (p<0.0001), leptin 
(p=0.0009), age*MCP-1 (p=0.0909), glucose*adiponectin 
(P=0.0424), glucose*resistin (p<0.0001), HOMA-IR*MCP-1 
(p<0.0001), while they are negatively associated with MCP-
1 (p=0.0264), resistin (p<0.0001), adiponectin (p=0.0783), 
glucose*HOMA-IR (p<0.0001), BMI*HOMA-IR (p<0.0001), 
leptin*adiponectin (p=0.0713). The variance of insulin levels 
is higher for breast cancer women (p=0.0003) than normal. 
It is positively associated with MCP-1 (p=0.0014), HOMA-
IR (p<0.0001), while it is negatively associated with leptin 
(p=0.0828) and glucose*MCP-1 (p=0.0003).

On the other hand, the MCP-1 model shows that mean 
MCP-1 is negatively associated with insulin (p<0.0001), while 
it is positively associated with insulin*leptin (p<0.0001). The 
variance of MCP-1 is positively associated with age*insulin 
(p=0.0025) and glucose*leptin (p=0.0819) [21]. The resistin 
model shows that mean resistin is negatively associated with 
glucose*adiponectin (p=0.1007) [22]. The leptin model shows 
that mean leptin is positive associated with glucose (p=0.0135) 
and insulin (p=0.0557) [24]. 

Model Variables
Gamma fit Log-normal fit

Estimate s.e. t-value p-value Estimate s.e. t-value p-value

Mean

Constant 0.6686 0.2266 2.951 0.0039 1.355 0.3283 4.127 <0.0001
Age -0.0028 0.0017 -1.641 0.1039 -0.0034 0.0023 -1.47 0.1447

HOMA-IR 1.324 0.0921 14.379 <0.0001 0.8828 0.0892 9.902 <0.0001
MCP-1 -0.0004 0.0002 -2.254 0.0264 -0.0005 0.0002 -2.464 0.0154

Age* MCP-1 0.0001 0.0001 1.707 0.0909 0.0001 0.0001 2.216 0.029
BMI 0.0295 0.0049 5.972 <0.0001 0.0189 0.0059 3.2 0.0018

BMI*HOMA-1R -0.0157 0.0026 -6.004 <0.0001 -0.0077 0.0026 -2.977 0.0037
REST -0.0329 0.0037 -8.803 <0.0001 -0.0317 0.0051 -6.175 <0.0001
GLUC -0.0028 0.0015 -1.855 0.0665 -0.0059 0.0026 -2.319 0.0224

GLUC*HOMA-1R -0.0047 0.0002 -23.689 <0.0001 -0.0037 0.0002 -19.071 <0.0001
ADIP -0.0271 0.0152 -1.779 0.0783 -0.0667 0.0249 -2.679 0.0086

GLUC*ADIP 0.0004 0.0002 2.054 0.0426 0.0008 0.0003 2.933 0.0042
GLUC*REST 0.0003 0.0001 9.207 <0.0001 0.0003 0.0001 6.459 <0.0001

HOMA-
1R*MCP-1 0.0001 0.0001 7.279 <0.0001 0.0001 0.0001 6.654 <0.0001

LEPT 0.0048 0.0014 3.409 0.0009 0.0079 0.0021 3.801 0.0002
LEPT*ADIP -0.0002 0.0001 -1.823 0.0713 -0.0003 0.0002 -1.52 0.1317

Disper- Constant -3.755 1.4324 -2.622 0.0101 -3.4553 2.3218 -1.488 0.1399
sion　 Age -0.0215 0.0088 -2.439 0.0165 -0.0352 0.0098 -3.574 0.0005

 GLUC 0.0037 0.0153 0.244 0.8077 0.0282 0.0247 1.142 0.2562
 MCP-1 0.007 0.0021 3.292 0.0014 0.0027 0.0037 0.729 0.4677
 GLUC*MCP-1 -0.0001 0.0001 -3.76 0.0003 0.0001 0.0001 -1.131 0.2608
 HOMA-IR 0.4168 0.06 6.943 <0.0001 - - - -
 LEPT -0.014 0.008 -1.752 0.0828 -0.0104 0.0109 -0.949 0.3449
 TYOP 1.1652 0.3082 3.781 0.0003 1.3311 0.3626 3.671 0.0004

AIC 318.773 396

Tab. 2. Results for mean and 
dispersion models for insulin 
from gamma and log-normal fit
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(MGLUCL) is positively associated with Types of Patients 
(TYOP) (p=0.0222) (1=healthy controls; 2=patients), 
concluding that it is higher for breast cancer women than normal. 
It proves that DM women have a greater risk of BC. MGLUCL 
is positively associated with leptin (p<0.0001), indicating that it 
rises as leptin increases. It is positively associated with HOMA-
IR(p<0.0001), implying that glucose level rises as HOMA-IR 
rises. These show that DM women have higher levels of leptin 
and HOMA-IR, and they have greater risk of BC. MGLUCL is 
negatively associated with interaction effect HOMA-IR*leptin 
(p<0.0001), interpreting that glucose level rises as HOMA-
IR*leptin decreases. It concludes that DM (or equivalently BC 
risk) women have higher levels of HOMA-IR and leptin but 
their interaction effect (HOMA-IR*leptin) is at low level. Also, 
MGLUC is negatively associated with the interaction effect 
leptin*adiponectin (p=0.0883), implying that glucose level 
rises as leptin*adiponectin decreases. It concludes that DM 
women have higher level of leptin and lower interaction effect 
ofleptin*adiponectin, while adiponectin has no association 
with glucose, which is also supported by [23]. The variance 
of glucose level (VGLUCL) is positively associated with 
HOMA-IR (p<0.0001) and resistin (p=0.0218), concluding 
that it rises as HOMA-IR, or resistin increases. It implies 
that glucose variance level is higher for women with higher 
HOMA-IR, or resistin level, and these women have higher BC 
risk. VGLUCL is negatively associated with leptin (p<0.0001), 
MCP-1 (p=0.0115), age*HOMA-IR (p=0.0310), age*resistin 
(p=0.0397), HOMA-IR*insulin (p=0.0002), implying that it 
rises as leptin, or MCP-1, or age*HOMA-IR, or age*resistin, or 
HOMA-IR*insulin decreases. 

From 2, fitted mean insulin level (MINSUL) is positively 
associated with HOM-IR (p<0.0001), leptin (p=0.0009), 
age*MCP-1 (p=0.0909), glucose*adiponectin (p=0.0424), 
glucose*resistin (p<0.0001), HOMA-IR*MCP-1 (p<0.0001) 
implying that it increases as HOMA-IR, or leptin, or 
age*MCP-1, or glucose*adiponectin, or glucose*resistin, or 
HOMA-IR*MCP-1increases. Note that MINSUL is negatively 
associated with age (p=0.1039) and MCP-1 (p=0.0264), while 
their interaction effect age*MCP-1 is positively associated with 
it. Similarly, MINSUL is negatively associated with glucose 
(p=0.0665), adiponectin (p=0.0783), and resistin (p<0.0001), 
while their two-factor interaction effects glucose*adiponectin 
(p=0.0424) and glucose*resistin (p<0.0001) are positively 
associated with it. On the other hand, MINSUL is positively 
associated with HOM-IR (p<0.0001), and it is negatively 
associated with MCP-1 (p=0.0264), but their interaction 
effect HOMA-IR*MCP-1 (p<0.0001) is positively associated 
with it. Also, MINSUL is positively associated with HOM-
IR (p<0.0001), leptin (p=0.0009), and it is negatively 
associated with glucose (p=0.0665), adiponectin (p=0.0783), 
but the interaction effects glucose*HOMA-IR (p<0.0001) 
and leptin*adiponectin (p=0.0713) are negatively associated 
with it. The variance of insulin level (VINSUL) is positively 
associated with TYOP (p=0.0003), concluding that it is higher 
for breast cancer women than normal. VINSUL is positively 
associated with MCP-1 (p=0.0014), HOMA-IR (p<0.0001), 
while it is negatively associated with leptin (p=0.0828) and 
glucose*MCP-1 (p=0.0003). So, it increases if MCP-1, or 
HOMA-IR level increases, or leptin level, or glucose*MCP-1 

effect decreases. Note that VINSUL is positively associated with 
MCP-1 (p=0.0014) and it is insignificant of glucose (0.8077), 
while their interaction effect glucose*MCP-1 (p=0.0003) is 
negatively associated with it. 

On the other hand, MCP-1 model shows that mean 
MCP-1 is negatively associated with insulin (p<0.0001), 
while it is positively associated with insulin*leptin (p<0.0001). 
Also variance of MCP-1 is positively associated age*insulin 
(p=0.0008) and glucose*leptin (p=0.0388) [21]. Resistin 
model shows that mean resistin is negatively associated with 
glucose*adiponectin (p=0.1007), and it is positively associated 
with glucose (p=0.2808) [22]. The leptin model shows that 
mean leptin is positively associated with glucose (p=0.0135) 
and insulin (p=0.0557) [24]. The adiponectin model shows 
that it is insignificant of both insulin (p=0.3627) and glucose 
(p=0.7054) [23].

The above results are discussed herein from the six models 
of DM and BC markers of the same data set. Best of our 
knowledge there are very little models for DM and BC markers 
together in the existing medical literature. So, it is not possible 
to discuss herein more inter-relationships between DM and 
BC markers from the other more research articles. Best of our 
knowledge, the current report first focuses on the complex 
interlinked relationships between DM and BC markers with 
many interaction effects. Most of the present outcomes are 
completely new in medical literature, so the present results are 
little compared with the earlier published outcomes.

CONCLUSION
The inter-relationships between DM and BC markers 

are presented in the report based on probabilistic modeling, 
where models are selected based on the lowest AIC value, small 
standard error of the estimates, comparison of distributions of 
the response variable, and graphical diagnostic checking. The 
present associations between DM and BC markers, though 
not completely conclusive, are revealing. Research should have 
higher faith in these models as they have been accepted based 
on examining many statistical criteria. It is concluded herein 
that both DM and BC markers have very complex closely 
interlinked relationships. Medical practitioners can predict 
the DM and BC markers relationships from this report. In 
addition, it may remove many contradicting ideas regarding 
the relationships between DM and BC markers. Women with 
diabetes should care about breast cancer risk. 
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