Venkata Naga Sai Suraj Pasupuleti
Department of Computer science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, IndiaPublications
-
Original Research Article
Utilizing support vector machine algorithm and feature reduction for accurate breast cancer detection: An exploration of normalization and hyper parameter tuning techniques
Author(s): V Shiva Kumar Chary*, Bellamkonda Satya Sai Venkateswarlu, Saketh Vemuri, Venkata Naga Sai Suraj Pasupuleti, Vijaya Babu Burra and Praveen Tumuluru
OIn this work, we will evaluate the impact of Independent Component Analysis (ICA) on a breast cancer decision support system’s feature reduction capabilities. The Wisconsin Diagnostic Breast Cancer (WDBC) dataset will be utilised to construct a one-dimensional feature vector (IC). We will study the performance of k-NN, ANN, RBFNN, and SVM classifiers in spotting mistakes using the original 30 features. Additionally, we will compare the IC-recommended classification with the original feature set using multiple validation and division approaches. The classifiers will be tested based on specificity, sensitivity, accuracy, F-score, Youden’s index, discriminant power, and Receiver Operating Characteristic (ROC) curve. This effort attempts to boost the medical decision support system’s efficiency while minimising computational complexity... Read More»
Editors List
-
Ahmed Hussien Alshewered
University of Basrah College of Medicine, Iraq
-
Sudhakar Tummala
Department of Electronics and Communication Engineering SRM University – AP, Andhra Pradesh
-
Alphonse Laya
Supervisor of Biochemistry Lab and PhD. students of Faculty of Science, Department of Chemistry and Department of Chemis
-
Fava Maria Giovanna
- Manuprasad Avaronnan
Onkologia i Radioterapia peer review process verified at publons
Indexed In
- Directory of Open Access Journals
- Scimago
- SCOPUS
- EBSCO A-Z
- MIAR
- Euro Pub
- Google Scholar
- Medical Project Poland
- PUBMED
- Cancer Index
- Gdansk University of Technology, Ministry Points 20